
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2492209

Constructing Good Partitioning Trees

Article · September 2001

Source: CiteSeer

CITATIONS

40
READS

269

1 author:

Some of the authors of this publication are also working on these related projects:

Augmented Reality - model based tracking View project

Use of machine learning to discern covert cognitive correlates View project

Bruce F. Naylor

University of Texas at Austin

29 PUBLICATIONS   1,665 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Bruce F. Naylor on 13 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2492209_Constructing_Good_Partitioning_Trees?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2492209_Constructing_Good_Partitioning_Trees?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Augmented-Reality-model-based-tracking?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Use-of-machine-learning-to-discern-covert-cognitive-correlates?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruce-Naylor?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruce-Naylor?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Texas_at_Austin?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruce-Naylor?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bruce-Naylor?enrichId=rgreq-cae827e5f122800b3e4505db82cac611-XXX&enrichSource=Y292ZXJQYWdlOzI0OTIyMDk7QVM6MjYxOTU4NTcwMDgyMzA3QDE0Mzk0NjcxOTg4Mzc%3D&el=1_x_10&_esc=publicationCoverPdf


1

Constructing Good Partitioning Trees

Bruce Naylor
AT&T Bell Laboratories

Murray Hill, NJ

ABSTRACT

Partitioning trees, a multi-dimensional generalization of
binary search trees, is alone among the principal methods for
representing geometry in combining the representation of a
set with the geometric search structure required for efficient
spatial operations such as set operations and visibility. Since
a partitioning tree may be interpreted as specifying a
program for exploring the structure induced on a space (e.g.
by objects), there are many trees which represent the same
spatial structure but provide different searches of the space.
The issue of generating a good program to determine spatial
relations between sets is then transformed into the issue of
constructing good partitioning trees. The metric we choose
for characterizing goodness is  the expected cost of various
elementary operations calculated using simple probability
models.  However, choosing the optimal from at least n!
different trees by enumeration is not viable. Consequently, we
employ heuristics that make local decisions based on the
expected cost models. In addition to this quantitative
methodology, we develop a qualitative understanding of what
constitutes a good representation.  This leads us to the notion
of a good tree as one that provides a sequence or set of
approximations, each obtained by various prunings of a
single tree.

INTRODUCTION

Of fundamental importance in any computational domain is
the representation of the values in that domain, i.e. the data
structures. For the domain of geometric computation, a few
predominate representations have emerged. These include
discrete space representations (arrays of lattice points),
topological representations (boundary-reps, parametric
surfaces), simplicial decompositions, and partitioning trees.
Binary Space Partitioning Trees generalize binary search trees
to dimensions > 1 and so combine a search structure with the
representation of a set.  Consequently, many partitioning
trees can represent the same set and the classic issue of
constructing a good search structure becomes a central issue
for partitioning tree theory.  It is this issue of constructing
good partitioning trees that we wish to address in this paper.

A solution to this issue is well known for one particular
case: point classification with 1-D trees. For this the methods
of constructing optimal binary search trees using dynamic
programming provide an optimal solution in O(n3). What is
interesting about our problem is not this 1-dimensional case,
however, in which the total ordering of the Reals permits the
use, of dynamic programming, but instead the higher
dimensional problem whose optimal solution appears
intractable. We also wish to account for a wider variety of
operations in which, unlike point classification, the operand
being inserted into the tree has extent, such as is the case with
set operations or ray tracing. The main technique we bring to
this problem is utilizing expected case models to guide tree
construction. Cost models for classifying points, lines and
planes give us a measure of the goodness of any tree and
provide a basis for improved heuristics for constructing trees.

The incipient versions of partitioning trees originated
independently in computer graphics ([Schumacker et al 69]
[Sutherland 73] and [Fuchs, Kedem and Naylor 80]) called
binary space partitioning trees (bsp trees) for solving the
visible surface problem, and in theoretical computer science
(e.g. [Rabin 72]) as linear decision trees for proving lower
bounds.  The same structure has also been used to represent
finite sets of points, where it has been called partition trees
[Willard 82]. We will refer to the structure simply as
partitioning trees.

Partitioning trees are most easily understood by
considering the process that constructs them. Figure 1
illustrates this.  Given a homogeneous open region r,  a
hyperplane h that intersects r is chosen using some criteria.
Then h is used to induce a binary partitioning on r that
generates two new d-dimensional regions, r+ = r <intersect>
h+ and r- = r <intersect>  h-, where h+ and h- are the
positive and negative open halfspaces of h respectively.
Also, generated is a (d-1)-dimensional region r0 = r
<intersect> h, called a sub-hyperplane.
Thus

Any of these new unpartitioned homogeneous regions can
similarly be partitioned, and so on recursively to produce a
binary tree of regions. When the process is terminated, the
remaining unpartitioned regions, called cells, together with the



2

sub-hyperplanes forms a partitioning of the initial region.  In
figure 1, the cells are labeled with numbers and the sub-
hyperplanes with letters.

Partitioning trees can be used as the basis for
creating a computational object, or abstract data-type,
for the semantic domain of geometric sets. These are
subsets of a d-dimensional space which are the domain
of a function of the form f: d-space => attributes.
Specifically, we use it to create an isomorphism
between geometric entities and a combinatorial
structure manipulated by algorithms. A polytope can
be represented by associating with each leaf a
membership attribute = { in, out }, dividing the cells into
in-cells  and out-cells . A point can then be classified as
in or out by following the path in the tree to the cell ci

that contains the point [Thibault and Naylor 87].

B-REP TO TREE CONVERSION

Since representing objects as trees is not how humans
experience objects, it is natural to ask how could such a
tree be constructed from something which is intuitive.
The most common method is to convert from a
boundary representation, which corresponds to how
humans see the world, to a partitioning tree. Since all
discontinuities/boundary-points must lie in partitioning
hyperplanes, we can convert from a b-rep to a tree
simply by using all of the face hyperplanes as
partitioning hyperplanes (see Figure 2). The face
hyperplanes can be chosen in any order and the

resulting tree will always generate a convex
decomposition of the interior and the exterior.

This conversion immediately raises the question as
to the relative size of the two representations, and of
course tree size is the simplest measure of goodness. If
the only operations on the tree entails visiting the
entire tree, as with visibility priority, then this is the
only measure needed. Some worst case results on size
were proven in [Naylor 81] where it was shown that
partitioning trees can represent arrangements of
hyperplanes and that the size of arrangements gives a
tight bound of θ( nd ) on the size of the largest possible
partitioning tree formed using n hyperplanes in d-
space. It was also shown that a set of disjoint (d-l)-
faces could result in a tree of size Ω (nd-1).  In [Paterson
and Yao 89] algorithms were presented for converting a
2D b-rep of size n to a partitioning tree of size θ(n log
n) , and in 3D to a tree of size θ( n2 ).

However, empirical results first appearing in [Naylor
81] indicated that partitioning tree representation of 3D
polytopes resulted in trees much closer to 0(n log n).
Much subsequent experience with constructing
partitioning trees has been consistent with these initial
data points. Thus, the worst case results must be
interpreted with some care.  We believe that the reason
for the difference between the worst case complexity
and the empirical results can be captured by a
principal of locality : in most all circumstances, the
individual geometric elements are bounded sets (e.g.
faces, line segments, points) whose size is small relative
to the region of space containing the set of elements.
That is, they are purely local features with respect to
that region of space (I am a local feature with respect to
my house, city, planet, etc.).



3

In contrast, for all constructions of worst case behavior
discovered so far, the principal of locality is violated.  This
fact is obvious with arrangements of hyperplanes since by
definition hyperplanes span all of d-space. The lower bound
quoted above in [Naylor 81] of Ω (nd-1) was produced by
arranging (d-I)-polytopes in d-space so that their projection
was essentially equivalent to an arrangement of hyperplanes
in (d-l)-space; consequently, there were no local features. The
examples in [Paterson and Yao 89] are of a similar nature, and
there is no example yet of a single manifold comprised of n
faces generating worst case behavior. The crucial difference
between arrangements of hyperplanes and partitioning trees
is the ordering induced on the set of hyperplanes by the tree.
This results in representing the elements using sub-
hyperplanes which almost always span a local region of
space and it is this property that allows partitioning trees to
model local features efficiently.

Once spatial search operations are introduced, such as
ray tracing [Naylor and Thibault 86] or set operations
[Naylor, Amanatides and Thibault 90] (which includes
clipping and collision detection [Naylor 92]), in which only a
subset of the tree need be visited, the shape of the tree
becomes at least as important as size, and probably more
important, in determining the efficiency of partitioning tree
algorithms (this observation is re-enforced by interpreting the
partitioning tree as a computation graph, so the tree is the
computation). With this fundamental change in the
operations on a tree, it becomes misleading to compare tree
size directly to the size of a brep until one includes in the
comparison the size of an additional spatial search structure
in which to embed the brep. When this is included for the
worst case examples in [Paterson and Yao 891, say using a
regular gird with a constant number of b-rep faces per grid
cell, then the size of the grid has the same complexity as the
size of a tree.

The essential property of partitioning trees upon which
this paper is based is that there are many trees that can
represent the same set or function.  This suggests the need
for a quantitative measure of "goodness" and methods to
generate good trees.  Below we introduce such a measure
(actually a class of measures) and examine certain methods
which we have implemented for constructing good trees that
exploit directly the definition of this measure. However,
before considering these ideas, we wish to first explore a
qualitative characterization of good trees that is intuitive and
leads to a more general understanding of efficient geometric
computation.

APPROXIMATIONS

A central concept for understanding efficient geometric
computation is that of the precision or resolution of a
computed value; and the quantity of computation used to
generate such a value at a particular resolution should be, in
some sense, proportional to the resolution. In computer
graphics, the most familiar example of this arises from the

limits of the human visual system. We can quantize the image
space and the color space into pixels, and the image need be
computed only to the resolution of the pixels.

This leads us into the general milieu of approximations.
In computer graphics, curved surfaces are often approximated
by piecewise linear surfaces.  A specific example of this is
the recursive subdivision of Bezier curves. In this case, the
set of successive control polygons generated during the
process provides an ordered set of linear approximations of
the curve. A classic example of an ordered set of
approximations is the Taylor series representation of
functions. Here, the kth element in an approximating
sequence is the sum of the first k terms of the Taylor series.

One may also interpret an ordered set of approximations
as providing a multi-resolution representation of a value.
With finite, discrete space representations, such as for images
as 2D arrays of pixels, the idea of a sequence of
approximations has manifested in the form of a pyramid of
images, where each successive member of the sequence has a
1D resolution that differs by a factor of 2. In the case of 3D
continuous space, a version of this idea has been used for
some time in real-time graphics systems as levels of detail.
An object has two or three different representations each
corresponding to a different level of detail. When an object is
distant, a low level of detail is used, and when close, a higher
level. Each level is typically constructed manually. Recently,
work has appeared that provides automation of the process
of creating a multi-resolution version of a b-rep, e.g. [Turk
92].

Partitioning trees as an ordered set of approximations

Recall that a partitioning tree generates a hierarchical
decomposition of space, and the regions along any path of
the tree are strictly decreasing in volume. This sequence of
regions could be interpreted as a sequence of approximations
that converges to the region corresponding to the leaf node
(the last term in the sequence). This then suggests the
potential of exploiting the hierarchy in order to realize the
idea of a set of approximations of a set.

We begin our development by constructing a simple
probability model for approximate point classification with
respect to an arbitrary polytope P. For any finite region r,
some percentage p of r lies in the interior of P and q = 1-p
percent lies in the exterior. Thus if a point x lying in r is
selected randomly from a uniform distribution, the
probability that it lies in the interior of P is exactly p and in
the exterior q. If we initially select a point x from some finite
region R, say one that completely contains P, and we
compute this classification probability for R and associate it
with the root region of a partitioning tree, then this could
constitute a first approximation: we would know the
probability of any point being classified as in or out.  Now
we could equally well apply this to every node of the tree;
that is, for each region r of the tree determine the following
conditional probability: if a point x in R also lies in r, chosen
from a distribution that is uniform over R, what is the



4

probability that x is in the interior of the set (we will for now
ignore the boundary, as it is a 0 measure set). The cells of the
tree would, of course, have p = 1 or 0, reflecting whether the
cell is in or out of P respectively.

Given a tree with such probabilities at each region, a
simple way to treat it as an ordered set of approximations
would be to threshold the expected values at each node to 0
or 1, which would also produce an expected error.

(classification, error)
if p < .5 then (0, p) else (1,1-p)

We could then classify x in R approximately by
descending a path until the expected error was below
some desired threshold, including no error, obtained by
descending to a leaf. Figure 3 gives the simplest of
examples.  The tuples of numbers at internal nodes is
(expected value : threshold value, probability of being
at the node, the expected error caused by thresholding
). The expected value for classification using only the
root node of the tree is 1/3, and thresholding produces
0 resulting in an expected error of 1/3.  We can improve
this by classifying a point with respect to the first
hyperplane. This gives us an expected error for a point
in the left half (graphically) of 0 since this is a leaf, and
in the right of (I- 2/3) * 1/2 = 1/6.  So the total expected
error for a tree comprised of the top three nodes is 1/6.
This is an improvement over 1/3 and so represents a
better approximation.

One may tend to think of a set of approximations
only in terms of forming a sequence, since this is the
simplest to understand and the most familiar. Thus one
might envision each level in a partitioning tree as
corresponding to an element in this sequence.  But
employing partitioning trees gives us not just a
sequence but rather a tree of approximations : for a
tree T, every connected subgraph of T which contains
the root of T can serve as an approximation (although
not necessarily a good one). A top-down view of this is
that one can terminate any path at any node. A bottom-
up view says that the subtree rooted at any node can
be pruned away, being replaced with some
approximation of that subtree. Those readers familiar
with machine learning methodologies based on
decision trees (the linear variety being syntactically the

same as partitioning trees) will recognize this tree
pruning strategy as a method for making
generalizations.

EXPECTED CASE MODELS

The foregoing has been in the main a qualitative
discussion, which while essential for our
understanding does not directly give an algorithmic
method of constructing good trees.  A classic
quantitative measure of goodness is worst case
complexity, a measure that can typically be arrived at
deductively (analytically).  This is certainly an
important measure, but it often provides only a first
approximation to what is needed.  It has long been
thought that expected case complexity constitutes a
better measure, but the required a priori analysis is
often too difficult.  However, this does not preclude
writing a program for measuring the expected case
complexity of a given tree, nor does it preclude utilizing
expected case models to inform the tree construction
process. And this is exactly what we have done.

Now one may ask what is the connection between
the idea of a set of approximations and utilizing
expected case models. If our thesis is true, that
representing a geometric set as an ordered set of
approximations is a good representation, then this
goodness should manifest itself quantitatively by
yielding good expected case complexity. Conversely, a
method that constructs representations with good
expected case complexity should produce a
representation that is in the neighborhood of a set of
approximations. The preliminary empirical evidence we
have generated does in fact support such a connection.
When we examine the trees produced by trying to
minimize the expected cost of several elementary
operations, the results appear to correspond to
something like a set of approximations.

Let us now construct a cost model. Consider first a
single operation involving a tree T and some other
operand, such as a point, a ray or another tree, referred
to as the input and denoted as I. Expected case
analysis requires that one have a probability
distribution of the input and the cost of performing the
operation. By weighting the cost by the probability, the
expected cost is defined as the weighted sum of all
inputs:

Ecost[ T, I ] =
Σ j I[j].prob ∗ I[j].cost,  0 < j < |I|.

If I is uncountable, then we would need to integrate
instead of forming the sum.

This can be extended easily to encompass a set of
operations O, such as rendering or set operations,
where we associate a distinct input set O[I].I with each
operation along with the probability of that operation



5

being selected  (the relative frequency with which a
given operation is executed).

Ecost[ T, 0 ] =
Σ i 0[I].prob ∗ Ecost[ T, 0[i].I ], 0 < i < |O|.

In practice, each 0[I].prob can be estimated by
modeling the context in which the tree will be used and
applying any sound sampling methodology to
determine the relative frequency of the operations.

Now to compute the expected cost for a particular
operation for a given tree T, we will in effect insert I,
treated as a random variable, into the tree. To do this
we need, as always, to know how to "partition" I at an
internal region r, and in this case this means we need to
know the probability of I lying in r+ and r-. If we assign
a unit cost to the partitioning operation then we have:

Ecost[ T, I ] =
IF T is a cell
THEN 0
ELSE 1 + p- ∗ Ecost [T

−] + p+ ∗ Ecost [T
+]

This formula as stated does not directly express any
dependency upon a particular operation; those
characteristics are encoded in the two probabilities p-
and p+. Once a model for these is specified, the
expected cost for a particular operation can be
computed for any tree.

Now consider point classification where I is a
random point chosen from a uniform distribution over
some initial region R partitioned by T. We need to
know at each node of the tree corresponding to a
region r, the conditional probability of the point lying
in r+ and r- given that it lies in r. For a uniform
distribution this is determined simply by the relative
sizes of the two child-regions to their parent region:

p+ = vol( r+ )  / vol( r ) + p0

p-  = vol( r- )  / vol( r ) + p0

where vol( r ) is the d-dimensional volume of r, and p0 is
the probability of a point being on the hyperplane.
When a point is on, both subtrees are traversed to find
all cells in its ε-neighborhood, which is essential if
boundary points are to be identified. If on the other
hand the boundary is treated as a 0 measure set, then
p0will be 0; otherwise it is a function of the width of the
subhyperplane, treated as being non-zero, and thus we
would have p+ + p- > 1.

For classifying a line segment which spans the
bounding volume of an object, we can model the
segment by its two endpoints, x1 and x2, and assume
that each endpoint is uniformly distributed on the
surface of r. Then T+ will be visited any time x1 or x2 is

in r+.  If we let pi
+ denote the probability of endpoint xi

being in r+, and similarly pI
-  for being in r-, we have

then

pi
+ = area( r+ ) / area( r ) + p0,  i = 1,2

pi
− = area( r−  ) / area( r ) + p0,  i = 1,2

p+ = p1
+ ∗ p2

+ + p1
+ ∗ p2

− + p1
− ∗ p2

+

     = 1 – (  p1
− ∗ p2

−  )
p−   = p1

+ ∗ p2
−   + p1

− ∗ p2
+ + p1

+ ∗ p2
−

     = 1 – (  p1
+ ∗ p2

+  )

An alternative developed for ray classification in
[Goldsmith and Salmon 87] models the probability of a
line intersecting any region as being proportional to its
area.  We then have

p+ = area( r+ ) / area( r )
p−   = area( r−  ) / area( r )

In either case, p+ + p−   is always > 1. Thus, unlike point
classification in which only a single path in the tree is
typically visited, classifying a line requires traversing
every path to a cell that contains the line, and so
connected subgraphs of T are visited that are
equivalent to the union of all such paths. Thus the
above cost function calculates the cost of traversing
these subgraphs weighted by their probability of being
selected.

Those readers familiar with optimal binary search
trees and Huffman codes will recall that probabilities
are associated with each leaf node rather than with the
decisions at internal nodes. If one thinks of the two
probabilities p−and p+ being associated with the two
edges of a given node, then the leaf probabilities are
simply the product of the edge probabilities on the path
from the root to a leaf. By using decision probabilities,
we are able to easily extend our model from points to
encompass extended input such as lines and planes.

The model for ray-tracing is similar to that for line
classification, but since ray-tracing is an ordered search
for the first intersection point, we have extended the
model to account for this termination.  Assuming that
the ray is ordered from x1 to x2, then if x1 is in r- and x2

is in r+ of node v, then the probability of traversing T+
is reduced by the probability t−  that the search has
terminated in T-.  We must also account for the
probability t0  that the search terminates from
intersection with any faces at v. This is modeled as
area(faces) / area(sub-hp).  Thus, using pI

− and pi
+ as

defined above for the line model, we have:

p+ = p1
+ ∗ p2

+ + p1
+ ∗ p2

− + p1
− ∗ p2

+  ∗ 
( 1 − (  t−  +  t0   ) )



6

p− = p1
− ∗ p2

− + p1
− ∗ p2

+ + p1
+ ∗ p2

−  ∗
( 1 − (  t+  +  t0   ) )

We would also like to directly model set operations,
but this is too complicated. A related quantity is the
expected cost of classifying a hyperplane. The
intersection of a hyperplane with any region is a
convex (d-I)-polytope. We approximate this with an
extension of the idea used above for classifying a line
segment. A sub-hp is approximated by a (d-l)-simplex
whose vertices are uniformly distributed on the
boundary of the region. For 3D we would have:

p+ = 1 − ( p1
− ∗ p2

− * p2
− )

p− = 1 − ( p1
+ ∗ p2

+ * p2
+ )

where pi
− and pI

+ are defined as for the line model.
While we would prefer a more accurate model, this
nonetheless seems to capture the essential properties
of the expected cost for this operation, for we have
validated the model empirically on around a dozen
examples, and the predicted value was typically within
5% of the measured value (the sample planes were
generated by selecting 3 points randomly on the
surface of the bounding box of an object).

If one accepts the above quantitative models, what
then do they tell us qualitatively about good trees? The
simplest characterization is that we want short paths to
high probability cells (i.e. large cells), and
symmetrically, we will accept long paths to low
probability cells (small cells corresponding to
"detail"). This is the same characterization that has
been made of optimal binary search trees and Huffman
codes, but by substituting "size of a region" for
probability we obtain a geometric rather than a numeric
interpretation.

By using decision probabilities rather than leaf
probabilities, we see that locally the best situation at an
internal region is one in which we have a partitioning in
which most of the information is in a small sub-region
(a low probability region), and as little as possible is in
a large region (see Figure 4). Thus, balanced is not
optimal in general, where balanced means equal sized
trees with equal probability of being selected. Balanced
trees are optimal only if the data is uniformly
distributed, which of course is the same distribution for
which uniform grids provide the optimal search
structure. However, 3D geometric data is usually
distributed very non-uniformly (consider a pine tree in
the middle of a parking lot). Instead of balanced, the
locally optimal decision for non-uniformly distributed
data is a partitioning that is as asymmetric as possible.
(Of course, no sequence of locally optimal decisions
will necessarily lead to the global optimum.)

Figure 4

Representation of convex polygons

Let us now apply some of these ideas to constructing a
good expected case representation of convex
polygons. In figure 5, we illustrate our proposal. The
first three hyperplanes create a simple approximation of
the exterior (a.k.a. a bounding volume) and the next
three similarly form an approximation to the interior.
This is consistent with our rule of thumb that says we
should construct short paths to large homogeneous
regions. This partitioning scheme also divides the
polygon into three segments each contained within a
triangular region. For each, we construct the subtree
recursively by choosing the hyperplane of the median
face to improve the approximation of the exterior,
followed by two hyperplanes incident with this face
which improve the interior's representation.  This
process yields a nearly balanced tree whose depth is
log n for an n-sided polygon. More importantly, it
provides a sequence of approximations of the interior
and exterior which converge to the boundary of the
polygon.

Now we are not claiming this representation is
necessarily the optimal expected case representation,
for in fact we do not know precisely what the optimal is.
But we do claim, given the foregoing qualitative and
quantitative characterization of goodness, that one
should expect it to be near optimal.

Since the tree in Figure 5 has log n depth, it is worst
case optimal for point classification [Preparata and
Sharnos 85].  But so is the tree in Figure 6 which is a
balanced binary tree with faces at the nodes lying at
the end of each path and the hierarchy of non-face
hyperplanes bisecting the set of faces lying in its
region. However, it does not appear to provide a
sequence of approximations.  How does this difference
appear quantitatively? For point classification, the
expected case differs markedly. For figure 6, all cells are
at depth log n, so the expected case is the same as the
worst case regardless of the sample space. However, in
figure 5, the top 3 out-cells would typically constitute
most of the sample space, and so the expected case
would converge to O(l) as the ratio of polygon-
area/sample-area went to 0.



7

A good tree representation of a convex polygon
Figure 5

For line classification the two differ significantly
both in the worst and expected cases. For figure 5, the
work required to classify a line is the same as that
required to classify the two points of intersection
between the line and the polygon. Inserting the line
partitions it into two nested sequences of intervals
converging to the intersection points. Thus, the worst
case is O( log n ) while the expected case converges to
O(l) as before.  However, for figure 6, almost any line
would intersect all of the radiating lines forming the
partitioning, and so the worst and expected case is
0(n).  From these bounds on line classification, we can
easily derive bounds for tree merging which is required
for set operations. Tree merging can be accomplished
by inserting the sub-hyperplanes of one tree into the
second tree. For two trees/polygons of size n, if we
treat the sub-hyperplanes as lines, this can take at most
O( n log n ) for figure 5 but O( n2  ) for figure 6. Thus,
what is good for point classification's expected case, is
also good for line classification and set operations, viz.
a set of approximations.

A poor tree representation of a convex polygon
Figure 6

General Tree Construction

To generate trees for arbitrary polytopes, we need a
much more general method than the one just presented
for convex polygons. Given a polytope represented by
its faces (i.e. as a b-rep), we can construct a partitioning
tree representation of that polytope using a top down
recursive algorithm. At each stage in the algorithm, we
have a region r containing the subset s of the
boundary lying in r. If the subset is non-empty, we
choose some hyperplane which intersects r and
partition s into s+ and s-, and then recurse with each of
these new subsets. Otherwise we create a cell.

Brep to Bspt : Brep b => Bspt T

IF b = NULL
 THEN

T = a cell
ELSE

h = Choose-Hyperplane( b )
{ b+, b−, b0  } = Partition_Brep( b, h )
T.faces = b0

T.pos_subtree = Brep_to_Bspt( b+ )
T.neg_subtree = Brep_to_Bspt( b− )

END

The central issue in constructing good trees is
hyperplane selection. Generating the optimal tree, like
most combinatorial optimization problems, appears



8

intractable. Our problem can in fact be considered to be
harder than those problems which require enumeration
of the power set since we have ordering; thus, for n
faces lying in n unique hyperplanes, there are at least
n! different trees. Consequently, we have always
employed heuristic methods (beginning with [Fuchs,
Kedem and Naylor 80]). These have been in the form of
a sum of positively weighted good attributes, such as
degree of balancing, and negatively weighted bad
attributes such as amount of face partitioning. In
addition to these, we now employ directly the expected
case models which measure the goodness of the tree.
At each call to Brep_To_Bspt, we must chose a single
partitioning hyperplane. Since we typically have no
way of knowing the optimal hyperplane, our approach
is to first generate a number of candidates that we
would expect to be good ones, determine the location
of a subset of the faces with respect to this hyperplane
(locations are: negative halfspace, positive halfspace,
both halfspaces, and on the hyperplane), and then
select a hyperplane by estimating the goodness of each
candidate using the expected case models. The
candidates are generated using three different methods.

As stated earlier, all faces must lie in partitioning
hyperplanes, and so the first method is to use face
hyperplanes as in the original work of [Fuchs, Kedem
and Naylor 80]. However, considering every possible
candidate at each recursive call to the construction
process is often too time consuming and usually not
necessary for generating good trees. Instead, the
number of such candidates is determined by a user
specified cost factor.  This cost factor is a mechanism
for attempting to balance the cost of constructing the
tree vs. the expected pay-back obtained during
subsequent operations on the tree from having built a
hopefully better tree. The cost factor determines
directly the initial number of candidates, which varies
from log n to n. The number of candidates c selected at
each call as a percentage of the number of faces f lying
in the current region is increased as a linear function of
f until a predetermined threshold is reached, after which
all face hyperplanes are chosen (currently 20). In
addition, since we are interested in generating a multi-
resolution representation, we bias the selection process
by first sorting the face hyperplanes by area (each
hyperplane is represented only once, and has with it a
list of coincident faces). The candidates are then the
first c on this sorted list.

A second and very important method of generating
candidates is similar to techniques for constructing k-d
trees [Bentley 75] which we have been using in various
forms since the time of [Thibault and Naylor 87] and
which were explored in various forms in [Toffes 90]. For
each of a predefined number of directions, we project
all of the vertices onto that direction and then sort
them. We then consider hyperplanes orthogonal to this
direction which contain vertices at certain positions in

the ordering. The percentage of positions tested is
treated similarly to that for choosing the number of face
hyperplanes. The directions we are currently using
correspond to the k-faces of a hypercube, whose
number in 3D is 13 = 26/2 (see figure 7 for the 2D case).
This is very similar to the schema for hyperplane
generation used in [Kay and Kajiya 86], the principal
difference being that we are not constructing bounding
volumes; most of the hyperplanes intersect the
polytope. This is a very important difference, with two
consequences. First, using, for example, only the
median and no face hyperplanes, we can generate a
reasonable partitioning hyperplane in 0(n) time which
can be used to partition an initially large number of
faces into smaller subsets with which we can apply
more expensive and presumably better selection
methods of complexity > 0(n).  Secondly, we are able to
generate candidates that partition the interior of many-
sided convex polytopes so that the tree is
comparatively balanced. Using only face hyperplanes,
any tree would be no more than a list of the faces, and
so would not be an effective search structure. With our
method, we can generate trees similar to the one in
figure 5 automatically without having any specific
knowledge that the set is convex.

The third method is similar to the second, but uses
least squares fit to generate a direction. In particular,
we compute the least squares fit of the set of vertices
lying in the current region, and then use the normal of
the resulting hyperplane as a new direction when
applying the same techniques as used with the pre-
defined directions.

Generating candidate hyperplanes by projection of vertices
Figure 7

Given the candidate set, we try to predict how
effective each one will be based on the expected case
models.  In particular, given the region r which we are
going to partition by a candidate, we can compute
exactly p p+ and p− for the given operation. However,
we can only estimate Ecost [T+] and Ecost [T−]. The
estimators for these values can depend only upon a
few simple properties of n+ and n- such as number of



9

faces and total surface area.  We have chosen very
simple estimators using as our model na, where a is a
value that depends upon the operation.  Using a
(currently small) sample set to determine these values,
we have measured them to be ( points = .4, line = .6,
plane = .8 ). The number n is determined by computing
the location of a subset of the faces, as mentioned
earlier. The subset is chosen by sampling in a manner
analogous to the sampling of face hyperplanes for use
as candidates. Faces that lie in both halfspaces are
added to the count for sides weighted by a penalty
factor for splitting (the factor various between 1.5 and
2). We would anticipate being able to improve the
quality of these estimators as we gain more
understanding, but they seem even now to be
reasonably effective.

Examples

We now show a few examples to illustrate the above
ideas.  The schema of representing convex polygons
has been applied to constructing trees of 3D objects
defined as surfaces of revolution [Ihm and Naylor 91].
The user first generates a "surface curve" which is to
be revolved and a convex "path of revolution", both of
which are given as a dense set of sample points (e.g.
from digitization).  We then construct good linear
approximations using a sparse subset of the sample
points.  If the axis of revolution is thought of as being
vertical, then we construct a balanced partitioning tree
out of horizontal planes so that each segment of the
surface curve lies between a pair of horizontal planes.
The curve of revolution is represented as in figure 5,
and the "revolution" of each segment is achieved by
using this structure to represent the set between each
pair of horizontal planes. See Picture 1 for an example of
a goblet represented in this manner where the edges
reveal all the intersections between sub-hyperplanes
and the boundary.

In Picture 2, we show a geometric model of a phone
handset, also with edges illustrating the partitioning.
This was generated using constructive solid geometry
starting from a few convex primitives each represented
by a tree generated using the general b-rep to bspt
conversion just described.  The resulting tree was
produced by using tree merging to provide set
operations. By recognizing that the sound holes
represent smaller features than the ear or mouth piece,
the partitioning due to these holes is limited to the
vicinity of their boundary.

In Picture 3, we illustrate the sequence of
approximations idea. The original b-rep data was
generated by triangulating between successive
contours of CAT-scan sample points. A tree then was
generated using the b-rep to tree conversion. The full
resolution tree is shown as the largest head on the far
right. The other three heads were created by pruning

this tree, and are shown scaled to the approximate
relative size that would be selected by a resolution
sensitive renderer. Each of the successively smaller
heads has a tree of about 1/2 the size of the next larger
one. To decide how to prune a tree, we maintain for
each region r an error estimate and classification
defined as:

error = Var( membership over r ) ∗Vol( r )

classification = E[ membership ] > 1/2 ? IN : OUT

Given an error threshold (manually selected in this
example), a region was considered to be a cell if error <
threshold. What we are showing in Picture 3 should
not be considered as the images that would be
generated by a resolution dependent rendering, since
the simple thresholding to IN or OUT introduces too
much high frequencies. Nor are we claiming our
pruning strategy is the best one.  Rather it is only
meant to illustrate our contention that there is a
correlation between expected case and sets of
approximations.

Finally, as an illustration of the effects of using
different probability models on tree construction, we
give a table of values in which we used only one model
to construct the tree (indicated by column headers), but
then measure the resulting tree using all the models
(indicated by row headings). The "old" method did not
use expected case models. The values given are the
expected number of internal nodes visited by each
operation, with the last row being the total number of
nodes in the tree. The test object was the space shuttle
(Picture 4).

Construction Point Line Plane Old
Measured

Point 7.96 8.12 8.56 11.7

Line 16.75 15.7 18.43 25.8

Plane 193 124 113 141

Nodes 1552 1173 1073 767

As one can see from this one example, the specific
probability model applied effects the resulting tree is a
way that yields the least cost tree for the modeled
operation when compared to the other models.  Also,
the use of expected case, when compared to previous
methods, tends to produce larger trees in order to
achieve better search structures.

CONCLUDING REMARKS

Like many combinatorial optimization problems, direct
generation of the optimal is not an alternative, and so
the question of how to best arrive somewhere in the



10

vicinity of the optimal using a set of local decisions is
always an open question (note how many solutions to
the Traveling Salesman Problem have been proposed).
We certainly have not closed the topic with this paper.
But we do feel that the notion of an ordered set of
approximations is the right one and generating trees
using expected case models is effective.

As for future work along these lines, the idea which
we are most interested in pursuing is seeing what can
be done with reorganizing an already constructed tree
without having to first convert back to a b-rep. Since
the 1D balancing techniques for AVL trees and Red-
Black trees do not apply directly in dimensions greater
than 1, it is an open question as to what can be done.

REFERENCES

[Bentley 75]
John L. Bentley, "Multidimensional Binary Search Trees
Used for Associative Searching", CACM Vol. 19, (Sept.
1975).

[Fuchs, Kedem, and Naylor 80]
H. Fuchs, Z. Kedem, and B. Naylor, "On Visible
Surface Generation by a Priori Tree Structures,"
Computer Graphics Vol. 14(3), pp. 124-133, (June
1980).

[Goldsmith and Salmon 87]
Jeffery Goldsmith and John Salmon, "Automatic
Creation of Object Hierarchies for Ray Tracing", IEEE
CG&A vol. 7(3), pp. 14-20, (May 1987).

[Ihm and Naylor 91]
Insung Ihm and Bruce Naylor, "Piecewise Linear
Approximations of Curves with Applications,"
Proceeding of Computer Graphics International '91,
Springer-Verlag (June 1991).

[Kay and Kajiya 86]
Timothy L. Kay and James T. Kajiya, "Ray Tracing
Complex Scenes," Computer Graphics Vol. 20(4), pp.
269-278, (June 1986).

[Naylor 81]
Bruce F. Naylor, "A Priori Based Techniques for
Determining Visibility Priority for 3-D Scenes," Ph.D.
Thesis, University of Texas at Dallas (May 1981).

[Naylor and Thibault 86]
Bruce F. Naylor and William C. Thibault, "Application
of BSP Trees to Ray-Tracing and CSG Evaluation",
Technical Report GIT-ICS 86/03, School of Information
and Computer Science, Georgia Institute of Technology,
Atlanta, Georgia 30332 (February 1986).

[Naylor, Amanatides and Thibault 90]
Bruce F. Naylor, John Amanatides and William C.
Thibault, "Merging BSP Trees Yields Polyhedral Set
Operations", Computer Graphics Vol. 24(4), pp. 115-
124, (August 1990).

[Naylor 92]
Bruce F. Naylor, "Interactive Solid Geometry Via
Partitioning Trees", Graphics Interface, pp. 11-18
(May 1992).

[Preparata and Shamos 85]
Franco P. Preparata and Michael Ian Shamos,
"Computational Geometry: An Introduction", Springer-
Verlag, 1989.

[Paterson and Yao 89]
M.S. Paterson and F.F. Yao, "Binary partitions with
applications to hidden-surface removal and solid
modeling", Proceedings of Fifth Symp. on Computational
Geometry, pp. 23-32, 1989.

[Rabin 72]
Michael 0. Rabin, "Proving Simultaneous Positivity of
Linear Forms", Journal of Computer and Systems
Science, Vol. 6, pp. 639-650 (1991).

[Schumacker et al 69]
R. A. Schumacker, R. Brand, M. Gilliland, and W.
Sharp, "Study for Applying Computer-Generated Images
to Visual Simulation," AFHRL-TR-69-14, U.S. Air Force
Human Resources Laboratory (1969).

[Sutherland 73]
Ivan Sutherland "Polygon Sorting by Subdivision: A
Solution to the Hidden-Surface Problem", unpublished
manuscript.

[Thibault and Naylor 87]
W. Thibault and B. Naylor, "Set Operations On
Polyhedra Using Binary Space Partitioning Trees",
Computer Graphics Vol. 21(4), pp. 153-162, (July
1987).

[Torres 90]
Eric Torres, "Optimization of the Binary Space Partition
Algorithm (BSP) for the Visualization of Dynamic
Scenes", Eurographics, (Sept. 1990).

[Turk 92]
Greg Turk, "Re-Tiling Polygonal Surfaces", Computer
Graphics Vol. 26(2), pp. 153-64, (July 1992).

[Willard 82]
D.E. Willard, "Polygon Retrieval", SIAM Journal  on
Computing, Vol. 11, pp. 149-165, (July 1987).



11

View publication statsView publication stats

https://www.researchgate.net/publication/2492209

